### Understanding Terminology

I wrote about how getting traction in the beginning of our studies in school can really affect our trajectory. I want to take this a step further today and talk about a specific example that alienates many students: terminology.

This issue is most persistent in mathematics, where definitions and theorems abound. It’s as if *everything* has a special name and meaning for it. To make matters even *more* confusing, the experts have decided to make shortcuts and give all these terms *symbols* to describe them. Now, the student has to learn – not one – but *two* sets of vocabularies to understand what is being discussed. And if I’m being honest, that’s only in the good-case scenario. More often, we find concepts that have multiple terms for them, and I’ve seen students quickly disengage from it all.

It’s great to have descriptors for all mathematical ideas, but we are often teaching them to students just for the sake of teaching them. Just as I’ve never been in a language class that painstakingly goes over words that have a bunch of synonyms, this isn’t particularly useful in class. Worse, getting *tested* on this sort of thing is nonsense, since one should be able to get by with only one name for an object. Sure, it can make for smoother conversations while exchanging mathematical ideas, but that knowledge and retention comes from familiarity, from actual usage. I know this because a lot of useless mathematical “facts” have long since departed from my memory since we never use them anymore. I remember doing step functions in secondary school (where the function was essentially a series of horizontal lines of the same size and would “jump” to a new new function value after a certain interval). I remember the notion of the step function, but it has been about four years since then and I don’t remember looking at this kind of function *once*. Maybe it’s because I’m in physics and mathematics and not in some different program, but the time spent on that function wasn’t useful at all. In the same sense, students aren’t learning the terminology because there is such little *use* for it.

The solution I propose is simple. If we really want to keep all these terms in mathematics education, we need to use the terms while discussing with students. Furthermore, we need *them* to practice using the terms. It’s not enough to just give a bunch of definitions and expect students to understand what they mean. Make them familiar with the terms, not just something that was copied once into a notebook and then forgotten about except for on a test.

### Traction

I reflect on this often, but I keep coming back to the same conclusion: mathematics, or physics, or any other science is *not* as difficult as people make it out to be. When non-science people roll their eyes as I tell them that the ideas I’m working with aren’t *that* difficult, I’m not just trying to be modest and say I’m not smart. That’s not the point. Instead, what I want to convey to them is the idea that mathematics and physics is like any other field. By working hard to understand what you are doing, you can become great at these subjects. It doesn’t take some innate ability to be good at physics or mathematics. It just requires patience and determination.

This is why it breaks my heart when I see those who struggle with mathematics or physics and act as if they will never be able to “fully” get it. To make matters worse, the subject becomes nearly an enemy to them, something that they’re doing the most they can to finish but then completely discard.

I think the main issue is one of traction. Too often I see young students being divided up into those who are “good” and those who aren’t. It’s frustrating to me because I *know* that these challenges will not last forever. But what happens is that they *do* end up persisting, simply because the student doesn’t “get” those first concepts as quickly. I’ve begun to wonder: how many people who proclaim to be bad at mathematics simply haven’t given themselves (nor have others) enough of a chance to really understand the subject?

If we want more people to be excited about mathematics and science, we cannot keep up this illusion of someone being “better” than the other. This may be true in the long run of someone’s career, but it isn’t a *useful* way of describing students when they are young and most prone to being shaped for life. If we start sending the message that learning mathematics and science is about gaining *traction*, than I think we can get more people into these fields. Once you’re off and running, the subjects aren’t quite as intimidating as they may have seemed.

### Lead By Example

In my mathematics classes in CÉGEP, a lot of the content became more and more abstract and theoretical as I learnt more and more about calculus. As such, it became easy to lose perspective of what I was actually doing, since a lot of it was simply symbols. Fortunately, my teacher understood this and gave us plenty of examples to learn from.

I’ve been thinking about this topic in the context of first learning content. Here’s a question: should you start by giving students definitions, or examples?

Arguably, the former gives students a more complete view of the mathematics. After all, a definition is created precisely because people wanted to know when a certain concept applied or not. Therefore, a definition should be useful for students to figure out precisely what does and does not apply in the situation.

While that may be true, it’s probably *not* the way to introduce a new concept to students. I doubt I’m an outlier in saying that I always enjoyed seeing a graph or a picture of what we were doing in my mathematics class versus getting a rigid and complete definition. It’s not that the latter was *bad*, but that it didn’t give us any sort of intuition as to what we were doing.

For example, when I began to learn about derivatives and integrals in my calculus classes, my teacher didn’t immediately jump to showing the general definition of a derivative or integral. Instead, constant examples were provided, giving us a feeling for what these two mathematical concepts were. It wasn’t general by any stretch of the imagination. Instead, it was specific, and it gave us a foothold in the concept. *Then*, my teacher was able to step back and give us the general definitions.

In many disciplines, the opposite approach is what generally works. First, you focus on the general concepts, and then you drill down into the specifics for your goal. However, it’s easier to do the reverse in mathematics, because seeing an example (preferably, an easy one), allows a student to look at the example and think, *I get the idea, how can we generalize it?*

This is so crucial in the beginning of learning a mathematical concept, because definitions can be daunting. Often, they look like a bunch of symbols that just don’t make sense, whereas one can *concretely* get the idea of concepts like the directional derivative or the gradient vector by looking at examples or drawing graphs. Sure, they can *also* be understood by definitions, but it’s much more difficult to process. In general, we excel at absorbing information in a visual way, so it makes total sense that we would look at examples before generalizing.

The key idea here is that mathematics is about *zooming out*. We want to generalize information, formulas, and theorems as much as possible. It’s much more satisfying to have one equation that covers a whole gamut of possibilities instead of having one specific equation for each possibility. However, grasping these general equations aren’t immediately easy, since definitions are abstract. Therefore, the use of examples *before* broadening the picture allows students to understand what is happening for a specific concept, giving them a better idea of what the different components of a definition or theorem do.

If you just throw definitions and theorems at students, they will have a much more difficult time to grasp a concept than if you draw a simple graph or diagram.

### The Spotlight

Is always on the winner, on the best person or idea or organization. The person in the spotlight is the person who we think is the best.

However, what we often miss is the person just outside of the spotlight, the one who *didn’t* make it. The spotlight is narrow, covering only the best of the best, and nothing else. But others are still present, and have done things that are almost as good as the one with the spotlight, yet they are in the dark.

At first glance, the system seems fair. The best thing gets highlighted, and that’s that. But what we fail to see is how *close* a lot of these others are, and they don’t get the spotlight. By all accounts, these things are *really good*, yet they are all outshone by the one. A waste, really.

Of course, it’s fair that many will see this as the critique of someone who has come in second place and who is a sore loser. I can understand that. However, I think we need to be honest with ourselves when we lift one thing into the air above the rest, forgetting the others surrounding it.

One particularly salient application of this is in looking at people who are rewarded for being the “best”. This can be on academic grounds, or for any other reason. The result is the same: plenty of other hardworking people are left in the periphery, barely noticed or not even seen because of the spotlight on the best person.

What I’ve learned from this is that you cannot attach who you are to the kinds of results you get, particularly when they are compared to other people. That is a surefire recipe towards being discouraged for not being noticed.

Instead, I need to find meaning in the work I do, regardless of what kind of external circumstance given. Just like a race, I can control my effort, but I cannot control the environment and the weather. Similarly, I can do my absolute best to get the greatest results possible, but I can’t guarantee that this will make me the “best”. Therefore, comparing to others doesn’t matter (or, I’m trying to make it matter less and less to me).

The external variables aren’t controllable for us, so we need to let them go. By focusing on the work we do instead of if external variables align with our goal, we can make more progress. Furthermore, we can enjoy our own results more, instead of looking at the spotlight and being disappointed that it isn’t on us.

The spotlight is a very narrow instrument. It’s not made to highlight more than one person, idea, or organization. Therefore, it misses so much, which means attaching importance to *only* the spotlight is a misleading thing. Better instead to appreciate one’s own efforts, without looking at the spotlight to be that judge.

There always is a single “best”, but that doesn’t mean everyone else is unimportant. Just because one person wins a race, it doesn’t mean that the other runners did not have a good race themselves.

The spotlight will always be there, but you can choose the meaning you want to assign yourself, independent of the spotlight.