Interdisciplinary


I have to be honest: I’ve often not taken other disciplines seriously because I’ve always seen physics as the “purest” science there is. That means I would disregard biology, chemistry, geology, and social science, as well as the arts and humanities at large. I think the two other fields which I did have a certain affinity too was mathematics and computer science, since they were about rigorous logic. Other than that, I found the other fields mildly interesting at best, but never something to take too seriously.

Obviously, this shows how blind I was to the world in general. I had projected the somewhat arbitrary categories of education to the universe, even though it wasn’t at all a good reflection. It’s not that I thought that the other subjects weren’t useful or important, but I didn’t see any use for me to care about them. They were subjects for other students to worry about, because I wasn’t going to waste my time doing them.

This narrow view of the world was one I’ve thankfully grown out of. As I read more about science, I’ve started to see how all the subjects we have can be important to the world. Furthermore, I’ve seen how interconnected they all are. It’s nice and all to separate the sciences into their own domains, but at one point, everything boils back down to physics, so there’s a definite link between the sciences. Additionally, disciplines such as computer science are useful to physics, mathematics, biology, chemistry, and basically every other branch of science. With the massive amount of data we’re acquiring in experiments now, it’s so important to be able to know the ins and outs of programming and how computers work in order to do your experiments.

What’s also interesting is how many disciplines are blending into one another. Physics isn’t just in a bubble. There’s biophysics, geophysics, physics in the medical setting, and plenty of other examples in industry. Heck, a lot of theoretical physics couldn’t be done without having some knowledge of how computer programming works. Likewise, you can find these “blends” of disciplines within biology, chemistry, and other sciences. We don’t have silos anymore.

The other thing to think about is that some of the most interesting problems in science today will probably be achieved by merging different sciences. Just to give one example, the idea of consciousness being information-processing can be tackled on the side of living organisms, but it can also be looked at through the lens of AI and computer science. Of course, if this is true, it will be interesting to analyze the various particles and properties needed in order to exhibit what we call consciousness. This isn’t a one-discipline problem. It’s something that many of the sciences can tackle.

This is why I’ve been trying to do more to learn about other disciplines as well. It’s fantastic to learn more about physics, but I think it’s equally important to look at subjects like biology and chemistry, as well as computer science sand mathematics. I’m not saying that I want to become an expert in all of these disciplines (besides, an expert would only be on one branch of that discipline), but I want to see how the sciences connect together. I think it’s my duty as a scientist to make sure I keep myself knowledgeable about other fields in addition to my own.

And lastly, the arts and humanities. While I respect the wonderful work they do, it’s not an area that I find myself as interested in, at least professionally. I’m a person of science, and so I tend to stick within scientific fields, though I can see the use of philosophy (however much I may dislike some aspects) as an important part of discussing how we govern and build an ethical and just society in the future.


The point I wanted to share here is that school makes it too difficult to be aware of the various disciplines outside of your own. My classes are solely in physics, mathematics, and the odd computer science course. Therefore, I don’t learn about biology, chemistry, or any of the social sciences. As such, the picture I have in my mind of these fields is woefully wrong (I’d imagine), since I have little to no exposure. I think this is a problem, and so I try to address it by reading books and following smart authors in other fields who can bring me information on things I’ve missed from my own education. Of course, it doesn’t mean the information will be useful to me (in the sense that I’ll use it in my life in what I do), but I think there’s something great about being able to know a little about various disciplines. As long as I stay mindful of how little of a picture I’m getting from these small bits of information, I can develop a more fleshed-out story of what science has taught us, and that can only be a good thing.

Remember, as you go further into school, your work gets narrower and more focused. Don’t forget about everything else that is going around you, because you will really miss out if you ignore it all.

Related Posts

The Grit to Push Through

Behind the Equations

Quantities in Context

Black Boxes

The Priority of Education

A Splash of Colour

Outside the Curriculum

Through the Minefield

Visuals in Mathematics

The Necessary Details